logo

Krv preteká tepnami pľúcneho obehu

Arteriálna krv je okysličená krv. Venózna krv - nasýtená oxidom uhličitým. Tepny sú cievy, ktoré nesú krv zo srdca. Žily sú cievy, ktoré prenášajú krv do srdca.

Krvný tlak: v tepnách najväčší, v priemere kapilár, v žilách najmenší. Krvná rýchlosť: najväčší v tepnách, najmenší v kapilárach, priemer v žilách.

Veľká cirkulácia: z ľavej komory arteriálnej krvi, najprv cez aortu, potom cez tepny do všetkých orgánov tela. V kapilárach veľkého kruhu sa krv stáva žilovou a cez duté žily vstupuje do pravej predsiene.

Malý kruh: z pravej komory venóznej krvi cez pľúcne tepny ide do pľúc. V kapilárach pľúc sa krv stáva arteriálnou a cez pľúcne žily vstupuje do ľavej predsiene.

1. Vytvorte korešpondenciu medzi krvnými cievami osoby a smerom prúdenia krvi v nich: 1 zo srdca, 2 do srdca
A) žily pľúcneho obehu
B) žily veľkého kruhu krvného obehu
B) tepny pľúcneho obehu
D) tepny systémového obehu

2. U ľudí krv z ľavej komory srdca
A) pri kontrahovaní vstupuje do aorty.
B) počas jeho kontrakcie padá do ľavej predsiene
B) zásobuje bunky tela kyslíkom
D) vstupuje do pľúcnej tepny
D) pod vysokým tlakom vstupuje do veľkého strmého obehu
E) pod malým tlakom vstupuje do pľúcneho obehu

3. Stanovte postup, v ktorom ľudské telo pohybuje krvou cez veľký kruh krvného obehu.
A) žily veľkého kruhu
B) artérie hlavy, rúk a trupu
C) aortu
D) kapiláry veľkého kruhu
D) ľavá komora
E) pravé predsieň

4. Stanovte postup, v ktorom ľudské telo prechádza krvou cez pľúcny obeh.
A) ľavej predsiene
B) pľúcne kapiláry
B) pľúcne žily
D) pľúcnych artérií
D) pravá komora

5. Krv preteká tepnami pľúcneho obehu u ľudí.
A) zo srdca
B) do srdca
B) nasýtený oxidom uhličitým
D) okysličený
D) rýchlejšie ako v pľúcnych kapilárach
E) pomalšie ako v pľúcnych kapilárach

6. Žily sú krvné cievy, ktorými prúdi krv.
A) zo srdca
B) do srdca
B) pod väčším tlakom ako v artériách
D) pri nižšom tlaku ako v artériách
D) rýchlejšie ako v kapilárach
E) pomalšie ako v kapilárach

7. Krv preteká tepnami systémového obehu
A) zo srdca
B) do srdca
B) nasýtený oxidom uhličitým
D) okysličený
D) Rýchlejšie ako iné krvné cievy.
E) pomalšie ako iné krvné cievy.

8. Nastavte sled pohybu krvi vo veľkom kruhu krvného obehu.
A) Ľavá komora
B) Kapiláry
B) pravé predsieň
D) tepny
D) Viedeň
E) Aorta

9. Stanovte poradie, v ktorom majú byť cievy usporiadané tak, aby sa v nich znižoval krvný tlak.
A) žily
B) Aorta
C) tepny
D) kapiláry

10. Vytvorte súlad medzi typom ľudských krvných ciev a typom krvi, ktorá sa v nich nachádza: 1 - arteriálny, 2-venózny
A) pľúcnych artérií
B) žily pľúcneho obehu
B) aortu a tepny pľúcneho obehu
D) hornú a dolnú dutú žilu

11. U cicavcov a ľudí sa venózna krv na rozdiel od arteriálnej
A) chudobný na kyslík
B) prúdi v malom kruhu cez žily
C) vyplní pravú polovicu srdca
D) nasýtený oxidom uhličitým
D) vstupuje do ľavej predsiene.
E) poskytuje bunkám tela živiny

12. Usporiadajte cievy tak, aby sa v nich znížila rýchlosť krvi.
A) superior vena cava
B) aortu
C) brachiálna artéria
D) kapiláry

Obehový systém Kruhy krvného obehu

Otázka 1. Aká je krv prúdiaca cez tepny veľkého kruhu a čo - cez tepny malého?
Arteriálna krv preteká tepnami veľkého kruhu a cez malé tepny prúdi venózna krv.

Otázka 2. Kde začína veľký obeh a kde končí malý kruh?
Všetky cievy tvoria dva kruhy krvného obehu: veľké a malé. Veľký kruh začína v ľavej komore. Z nej odchádza aorta, ktorá tvorí oblúk. Arter z aortálneho oblúka. Koronárne cievy, ktoré dodávajú myokard, prúdia krvou z počiatočnej časti aorty. Časť aorty, ktorá je v hrudníku, sa nazýva hrudná aorta a časť, ktorá sa nachádza v brušnej dutine, sa nazýva abdominálna aorta. Aorta vetvy na artériách, artériách na arteriolách, arteriolách na kapilárach. Kyslík a živiny pochádzajú z kapilár veľkého kruhu do všetkých orgánov a tkanív a oxid uhličitý a metabolické produkty pochádzajú z buniek do kapilár. Krv sa transformuje z arteriálnej na venóznu.
Čistenie krvi z toxických produktov rozkladu sa uskutočňuje v cievach pečene a obličiek. Krv z tráviaceho traktu, pankreasu a sleziny vstupuje do portálnej žily pečene. V pečeni je portálna žila rozvetvená do kapilár, ktoré sú potom opäť spojené do spoločného kmeňa pečeňovej žily. Táto žila prúdi do nižšej dutej žily. Teda všetka krv z brušných orgánov pred vstupom do veľkého kruhu prechádza cez dve kapilárne siete: cez kapiláry týchto orgánov samotných a cez kapiláry pečene. Portálový systém pečene zabezpečuje neutralizáciu toxických látok, ktoré sa tvoria v hrubom čreve. V obličkách sú tiež dve kapilárne siete: sieť renálnych glomerulov, cez ktorú krvná plazma obsahujúca škodlivé metabolické produkty (močovina, kyselina močová) prechádza do dutiny nefrónovej kapsuly a kapilárnej siete pletených spletitých tubulov.
Kapiláry sa spoja do venúl, potom do žíl. Potom všetka krv vstupuje do hornej a dolnej dutej žily, ktorá prúdi do pravej predsiene.
Pľúcny obeh začína v pravej komore a končí v ľavej predsieni. Venózna krv z pravej komory vstupuje do pľúcnej tepny, potom do pľúc. Výmena plynu sa vyskytuje v pľúcach, žilová krv sa stáva arteriálnou. V štyroch pľúcnych žilách vstupuje arteriálna krv do ľavej predsiene.

Otázka 3. Patrí lymfatický systém do uzavretého alebo otvoreného systému?
Lymfatický systém by mal byť klasifikovaný ako odomknutý. Slepo začína v tkanivách lymfatických kapilár, ktoré sa potom spoja do lymfatických ciev a tieto zase vytvárajú lymfatické kanály, ktoré prúdia do venózneho systému.

Veľké a malé kruhy krvného obehu

Veľké a malé kruhy krvného obehu človeka

Krvný obeh je pohyb krvi cievnym systémom, ktorý zabezpečuje výmenu plynov medzi organizmom a vonkajším prostredím, výmenu látok medzi orgánmi a tkanivami a humorálnu reguláciu rôznych funkcií organizmu.

Obehový systém zahŕňa srdce a cievy - aortu, artérie, arterioly, kapiláry, žilky, žily a lymfatické cievy. Krv sa pohybuje cez cievy v dôsledku kontrakcie srdcového svalu.

Cirkulácia prebieha v uzavretom systéme pozostávajúcom z malých a veľkých kruhov:

  • Veľký kruh krvného obehu poskytuje všetky orgány a tkanivá s krvou a živinami v ňom obsiahnutými.
  • Malý, alebo pľúcny, krvný obeh je navrhnutý tak, aby obohatil krv kyslíkom.

Kruhy krvného obehu prvýkrát opísal anglický vedec William Garvey v roku 1628 vo svojej práci Anatomické vyšetrovanie pohybu srdca a plavidiel.

Pľúcna cirkulácia začína z pravej komory, jej redukciou, venózna krv vstupuje do pľúcneho kmeňa a prúdi pľúcami, uvoľňuje oxid uhličitý a je nasýtený kyslíkom. Kyslíkom obohatená krv z pľúc putuje cez pľúcne žily do ľavej predsiene, kde končí malý kruh.

Systémová cirkulácia začína od ľavej komory, ktorá, keď je redukovaná, je obohatená kyslíkom, je pumpovaná do aorty, tepien, arteriol a kapilár všetkých orgánov a tkanív a odtiaľ cez žilky a žily prúdi do pravej predsiene, kde končí veľký kruh.

Najväčšou nádobou veľkého kruhu krvného obehu je aorta, ktorá siaha od ľavej srdcovej komory. Aorta tvorí oblúk, z ktorého sa oddeľujú tepny, ktoré prenášajú krv do hlavy (krčné tepny) a do horných končatín (vertebrálne artérie). Aorta steká pozdĺž chrbtice, kde sa od nej rozširujú vetvy, prenášajú krv do brušných orgánov, svalov trupu a dolných končatín.

Arteriálna krv, bohatá na kyslík, prechádza celým telom, dodáva bunkám orgánov a tkanív živiny a kyslík, ktoré sú potrebné pre ich činnosť, a v kapilárnom systéme sa mení na žilovú krv. Žilová krv nasýtená oxidom uhličitým a produktmi bunkového metabolizmu sa vracia do srdca a z nej vstupuje do pľúc na výmenu plynu. Najväčšie žily veľkého kruhu krvného obehu sú horné a dolné duté žily, ktoré prúdia do pravej predsiene.

Obr. Schéma malých a veľkých kruhov krvného obehu

Treba poznamenať, ako sú obehové systémy pečene a obličiek zahrnuté do systémového obehu. Všetka krv z kapilár a žíl žalúdka, čriev, pankreasu a sleziny vstupuje do portálnej žily a prechádza pečeňou. V pečeni sa portálna žila rozvetvuje na malé žily a kapiláry, ktoré sa potom znovu pripoja k spoločnému kmeňu pečeňovej žily, ktorý prúdi do dolnej dutej žily. Všetka krv brušných orgánov pred vstupom do systémového obehu preteká cez dve kapilárne siete: kapiláry týchto orgánov a kapiláry pečene. Portálový systém pečene zohráva veľkú úlohu. Zabezpečuje neutralizáciu toxických látok, ktoré sa tvoria v hrubom čreve štiepením aminokyselín v tenkom čreve a sú absorbované sliznicou hrubého čreva do krvi. Pečeň, rovnako ako všetky ostatné orgány, dostáva arteriálnu krv cez pečeňovú tepnu, ktorá siaha od brušnej tepny.

V obličkách sú tiež dve kapilárne siete: v každom malpighianskom glomerule je kapilárna sieť, potom sú tieto kapiláry spojené do arteriálnej cievy, ktorá sa opäť rozpadá na kapiláry, skrútené skrútené tubuly.

Obr. Obeh krvi

Funkciou krvného obehu v pečeni a obličkách je spomalenie prietoku krvi v dôsledku funkcie týchto orgánov.

Tabuľka 1. Rozdiel v prietoku krvi vo veľkých a malých kruhoch krvného obehu

Prúdenie krvi v tele

Veľký kruh krvného obehu

Obehový systém

V ktorej časti srdca začína kruh?

V ľavej komore

V pravej komore

V ktorej časti srdca končí kruh?

V pravej predsieni

V ľavej predsieni

Kde dochádza k výmene plynu?

V kapilárach sa nachádza v orgánoch hrudnej a brušnej dutiny, mozgu, horných a dolných končatín

V kapilárach v alveolách pľúc

Aká krv sa pohybuje tepnami?

Aká krv sa pohybuje žilami?

Čas prietoku krvi v kruhu

Zásobovanie orgánov a tkanív kyslíkom a prenos oxidu uhličitého

Okysličovanie krvi a odstraňovanie oxidu uhličitého z tela

Čas krvného obehu je časom jediného prechodu krvných častíc cez veľké a malé kruhy cievneho systému. Viac podrobností v nasledujúcej časti článku.

Vzorky prietoku krvi cez cievy

Základné princípy hemodynamiky

Hemodynamika je časť fyziológie, ktorá skúma vzory a mechanizmy pohybu krvi cez cievy ľudského tela. Pri štúdiu sa používa terminológia a zohľadňujú sa zákony hydrodynamiky, vedy o pohybe kvapalín.

Rýchlosť, s akou sa krv pohybuje, ale do ciev závisí od dvoch faktorov:

  • z rozdielu v krvnom tlaku na začiatku a konci cievy;
  • od odporu, ktorý sa stretáva s tekutinou v jeho ceste.

Rozdiel tlaku prispieva k pohybu tekutiny: čím je väčší, tým intenzívnejší je tento pohyb. Rezistencia v cievnom systéme, ktorá znižuje rýchlosť pohybu krvi, závisí od mnohých faktorov:

  • dĺžka plavidla a jeho polomer (čím väčšia je dĺžka a čím menší je polomer, tým väčší je odpor);
  • viskozita krvi (je to päťnásobok viskozity vody);
  • trenie krvných častíc na stenách ciev a medzi nimi.

Hemodynamické parametre

Rýchlosť prietoku krvi v cievach sa vykonáva podľa zákonov hemodynamiky, spoločne so zákonmi hydrodynamiky. Rýchlosť prietoku krvi je charakterizovaná tromi indikátormi: objemovou rýchlosťou prietoku krvi, lineárnou rýchlosťou prietoku krvi a časom krvného obehu.

Objemová rýchlosť prietoku krvi je množstvo krvi prúdiacej cez prierez všetkých ciev daného kalibru za jednotku času.

Lineárna rýchlosť prietoku krvi - rýchlosť pohybu jednotlivej častice krvi pozdĺž cievy za jednotku času. V strede nádoby je lineárna rýchlosť maximálna a blízko steny ciev je minimálna v dôsledku zvýšeného trenia.

Čas krvného obehu je čas, počas ktorého krv prechádza veľkými a malými kruhmi krvného obehu, zvyčajne je to 17-25 s. Asi 1/5 je strávený na prechod cez malý kruh, a 4/5 tohto času je strávený na prechod cez veľký.

Hnacou silou prietoku krvi v cievnom systéme každého z kruhov krvného obehu je rozdiel v krvnom tlaku (ΔP) v počiatočnej časti arteriálneho lôžka (aorta pre veľký kruh) a posledná časť venózneho lôžka (duté žily a pravé predsiene). Rozdiel v krvnom tlaku (AP) na začiatku cievy (P1) a na jej konci (P2) je hnacou silou prietoku krvi cez ktorúkoľvek cievu obehového systému. Sila gradientu krvného tlaku sa vynakladá na prekonanie rezistencie na prietok krvi (R) v cievnom systéme a v každej jednotlivej nádobe. Čím vyšší je gradient tlaku krvi v kruhu krvného obehu alebo v samostatnej nádobe, tým väčší je v nich objem krvi.

Najdôležitejším indikátorom pohybu krvi cievami je objemová rýchlosť prietoku krvi alebo objemový prietok krvi (Q), ktorým rozumieme objem krvi prúdiacej cez celkový prierez cievneho lôžka alebo prierez jedného cieva za jednotku času. Objemový prietok krvi je vyjadrený v litroch za minútu (l / min) alebo mililitroch za minútu (ml / min). Na stanovenie objemového prietoku krvi cez aortu alebo celkový prierez akejkoľvek inej úrovne krvných ciev systémového obehu sa používa koncepcia objemového systémového prietoku krvi. Pretože za jednotku času (minútu) celý objem krvi, ktorý v tomto čase vyteká ľavá komora, prúdi cez aortu a iné cievy veľkého kruhu krvného obehu, termín minuskulačný objem krvi (IOC) je synonymom koncepcie systémového prietoku krvi. IOC dospelého v pokoji je 4–5 l / min.

Tam je tiež objemový prietok krvi v tele. V tomto prípade sa týka celkového prietoku krvi za jednotku času cez všetky cievne cievy alebo venózne cievy tela.

Teda objemový prietok krvi Q = (P1 - P2) / R.

Tento vzorec vyjadruje podstatu základného zákona hemodynamiky, ktorý uvádza, že množstvo krvi pretekajúce cez celkový prierez cievneho systému alebo jedinej cievy za jednotku času je priamo úmerné rozdielu v krvnom tlaku na začiatku a konci cievneho systému (alebo cievy) a nepriamo úmerné odporu prúdu. v krvi.

Vypočíta sa celkový (systémový) prietok krvi vo veľkom kruhu s prihliadnutím na priemerný hydrodynamický krvný tlak na začiatku aorty P1 a na ústach dutých žíl P2. Pretože v tejto časti žíl je krvný tlak blízky 0, potom je hodnota P rovná strednému hydrodynamickému arteriálnemu tlaku krvi na začiatku aorty nahradená do výrazu na výpočet Q alebo IOC: Q (IOC) = P / R.

Jeden z dôsledkov základného zákona hemodynamiky - hybná sila krvného toku v cievnom systéme - je spôsobený tlakom krvi vytvorenej prácou srdca. Potvrdenie rozhodujúceho významu hodnoty krvného tlaku pre prietok krvi je pulzujúca povaha prietoku krvi počas celého srdcového cyklu. Počas srdcovej systoly, keď krvný tlak dosiahne maximálnu hladinu, zvyšuje sa prietok krvi a počas diastoly, keď je krvný tlak minimálny, je prietok krvi oslabený.

Ako sa krv pohybuje cez cievy z aorty do žíl, krvný tlak sa znižuje a rýchlosť jeho poklesu je úmerná rezistencii na prietok krvi v cievach. Obzvlášť rýchlo klesá tlak v arteriolách a kapilárach, pretože majú veľkú odolnosť proti prietoku krvi, majú malý polomer, veľkú celkovú dĺžku a početné vetvy, čo vytvára ďalšiu prekážku prietoku krvi.

Odolnosť proti prietoku krvi vytvorená v cievnom lôžku veľkého kruhu krvného obehu sa nazýva všeobecná periférna rezistencia (OPS). Preto vo vzorci na výpočet objemového prietoku krvi môže byť symbol R nahradený jeho analógom - OPS:

Q = P / OPS.

Z tohto výrazu vyplýva množstvo dôležitých dôsledkov, ktoré sú potrebné na pochopenie procesov krvného obehu v tele, na vyhodnotenie výsledkov merania krvného tlaku a jeho odchýlok. Faktory ovplyvňujúce odpor nádoby, pre prietok tekutiny, sú opísané v zákone Poiseuille, podľa ktorého

kde R je rezistencia; L je dĺžka plavidla; η - viskozita krvi; Π - číslo 3.14; r je polomer plavidla.

Z vyššie uvedeného výrazu vyplýva, že vzhľadom na to, že čísla 8 a constant sú konštantné, L u dospelých sa veľmi nemení, množstvo periférnej rezistencie na prietok krvi je určené meniacimi sa hodnotami polomeru cievy r a viskozitou krvi η).

Už bolo spomenuté, že polomer ciev svalového typu sa môže rýchlo meniť a má významný vplyv na množstvo rezistencie voči prietoku krvi (teda ich názov je odporové cievy) a množstvo prietoku krvi cez orgány a tkanivá. Pretože odpor závisí od veľkosti polomeru do štvrtého stupňa, aj malé výkyvy polomeru ciev silne ovplyvňujú hodnoty odporu voči prietoku krvi a prietoku krvi. Napríklad, ak sa polomer plavidla zmenší z 2 na 1 mm, jeho odpor sa zvýši o 16-násobok a pri konštantnom gradiente tlaku sa prietok krvi v tejto nádobe tiež zníži o 16-násobok. Reverzné zmeny rezistencie budú pozorované pri zvýšení polomeru cievy o 2-násobok. Pri konštantnom priemernom hemodynamickom tlaku sa prietok krvi v jednom orgáne môže zvyšovať, v druhom prípade sa znižuje v závislosti od kontrakcie alebo relaxácie hladkých svalov arteriálnych ciev a žíl tohto orgánu.

Viskozita krvi závisí od obsahu krvných erytrocytov (hematokrit), proteínu, plazmatických lipoproteínov, ako aj od stavu agregácie krvi. Za normálnych podmienok sa viskozita krvi nemení tak rýchlo ako lumen ciev. Po strate krvi, pri erytropoénii, hypoproteinémii klesá viskozita krvi. Pri významnej erytrocytóze, leukémii, zvýšenej agregácii erytrocytov a hyperkoagulácii sa môže výrazne zvýšiť viskozita krvi, čo vedie k zvýšenej rezistencii voči prietoku krvi, zvýšenému zaťaženiu myokardu a môže byť sprevádzané zhoršeným prietokom krvi v cievach mikrovaskulatúry.

V dobre zavedenom režime krvného obehu je objem krvi vypudený ľavou komorou a prúdiaci cez prierez aorty rovný objemu krvi prúdiacej cez celkový prierez ciev akejkoľvek inej časti veľkého kruhu krvného obehu. Tento objem krvi sa vracia do pravej predsiene a vstupuje do pravej komory. Z neho sa krv vylučuje do pľúcneho obehu a potom sa pľúcnymi žilami vracia do ľavého srdca. Pretože IOC ľavej a pravej komory sú rovnaké a veľké a malé kruhy krvného obehu sú zapojené do série, objemová rýchlosť prietoku krvi v cievnom systéme zostáva rovnaká.

Avšak počas zmien stavu prietoku krvi, napríklad pri prechode z horizontálnej do vertikálnej polohy, keď gravitácia spôsobuje dočasné nahromadenie krvi v žilách dolného trupu a nôh, môže byť krátkodobo inokedy IOC ľavej a pravej komory. Čoskoro intrakardiálny a mimokardiálny mechanizmus regulujúci fungovanie srdca vyrovná objemy krvi cez malé a veľké kruhy krvného obehu.

S prudkým poklesom venózneho návratu krvi do srdca, čo spôsobuje pokles objemu cievnej mozgovej príhody, môže krvný tlak krvi klesnúť. Ak sa výrazne zníži, prietok krvi do mozgu sa môže znížiť. To vysvetľuje pocit závratu, ktorý sa môže vyskytnúť pri náhlom prechode osoby z horizontálnej do vertikálnej polohy.

Objem a lineárna rýchlosť krvných prúdov v cievach

Dôležitým homeostatickým indikátorom je celkový objem krvi v cievnom systéme. Priemerná hodnota pre ženy je 6-7%, pre mužov 7-8% telesnej hmotnosti a je 4-6 litrov; 80-85% krvi z tohto objemu je v nádobách veľkého kruhu krvného obehu, približne 10% je v cievach malého kruhového obehu krvi a približne 7% je v srdcových dutinách.

Väčšina krvi je obsiahnutá v žilách (asi 75%) - to poukazuje na ich úlohu pri ukladaní krvi tak vo veľkom, ako aj v malom okruhu krvného obehu.

Pohyb krvi v cievach je charakterizovaný nielen objemom, ale aj lineárnou rýchlosťou prúdenia krvi. Pod ním rozumieme vzdialenosť, ktorú sa kus krvi pohybuje za jednotku času.

Medzi objemovou a lineárnou rýchlosťou prietoku krvi existuje vzťah opísaný nasledujúcim výrazom:

V = Q / Pr2

kde V je lineárna rýchlosť prietoku krvi, mm / s, cm / s; Q - rýchlosť prúdenia krvi; P - číslo rovné 3,14; r je polomer plavidla. Hodnota Pr2 odráža prierezovú plochu plavidla.

Obr. 1. Zmeny krvného tlaku, lineárna rýchlosť prietoku krvi a plocha prierezu v rôznych častiach cievneho systému

Obr. 2. Hydrodynamické charakteristiky cievneho lôžka

Z vyjadrenia závislosti veľkosti lineárnej rýchlosti na objemovom obehovom systéme v cievach je možné vidieť, že lineárna rýchlosť prietoku krvi (obr. 1) je úmerná objemovému prietoku krvi cez nádobu (-y) a je nepriamo úmerná ploche prierezu tejto nádoby (nádob). Napríklad v aorte, ktorá má najmenšiu prierezovú plochu vo veľkej cirkulačnej kružnici (3-4 cm2), je lineárna rýchlosť pohybu krvi najväčšia a je v pokoji asi 20-30 cm / s. Počas cvičenia sa môže zvýšiť o 4-5 krát.

Ku kapiláram sa zvyšuje celkový priečny lúmen ciev a následne klesá lineárna rýchlosť prietoku krvi v artériách a arteriolách. V kapilárnych cievach, ktorých celková prierezová plocha je väčšia ako v ktorejkoľvek inej časti ciev veľkého kruhu (500 - 600-násobok prierezu aorty), lineárna rýchlosť prietoku krvi je minimálna (menej ako 1 mm / s). Pomalý prietok krvi v kapilárach vytvára najlepšie podmienky pre tok metabolických procesov medzi krvou a tkanivami. V žilách sa lineárna rýchlosť prietoku krvi zvyšuje v dôsledku poklesu plochy ich celkového prierezu, keď sa približuje k srdcu. V ústach dutých žíl je 10-20 cm / s a ​​pri zaťažení sa zvyšuje na 50 cm / s.

Lineárna rýchlosť plazmy a krvných buniek závisí nielen od typu cievy, ale aj od ich umiestnenia v krvnom obehu. Tam sú laminárne typ prietoku krvi, v ktorom bankovky krvi môžu byť rozdelené do vrstiev. Súčasne je lineárna rýchlosť krvných vrstiev (najmä plazmy), ktorá je v blízkosti steny cievy alebo v jej blízkosti, najmenšia a vrstvy v strede toku sú najväčšie. Trecie sily vznikajú medzi vaskulárnym endotelom a blízkymi vrstvami krvi a vytvárajú šmykové napätia na cievnom endoteli. Tieto napätia hrajú úlohu vo vývoji cievne aktívnych faktorov endotelom, ktorý reguluje lumen krvných ciev a rýchlosť prúdenia krvi.

Červené krvinky v cievach (s výnimkou kapilár) sa nachádzajú hlavne v centrálnej časti prietoku krvi a pohybujú sa v ňom relatívne vysokou rýchlosťou. Leukocyty sa naopak nachádzajú prevažne vo vrstvách krvného obehu v blízkosti stien a vykonávajú valivé pohyby pri nízkej rýchlosti. To im umožňuje viazať sa na adhézne receptory v miestach mechanického alebo zápalového poškodenia endotelu, priľnúť k cievnej stene a migrovať do tkaniva na vykonávanie ochranných funkcií.

S výrazným zvýšením lineárnej rýchlosti krvi v zúženej časti ciev, v miestach vypustenia z nádoby svojich vetiev, môže byť laminárna povaha pohybu krvi nahradená turbulentnou. Súčasne, v prietoku krvi, môže byť narušený pohyb jeho častíc po vrstve, medzi stenou cievy a krvou, môžu sa vyskytnúť veľké sily trenia a šmykového napätia ako pri laminárnom pohybe. Vyvolávajú sa vírivé krvné toky, zvyšuje sa pravdepodobnosť endotelového poškodenia a ukladania cholesterolu a ďalších látok v intíme cievnej steny. To môže viesť k mechanickému narušeniu štruktúry cievnej steny a iniciácii vývoja parietálnych trombov.

Čas úplného krvného obehu, t.j. návrat častice krvi do ľavej komory po jej ejekcii a prechod cez veľké a malé kruhy krvného obehu, robí 20-25 sekúnd v poli, alebo približne 27 systol srdcových komôr. Približne štvrtina tohto času je venovaná pohybu krvi cez cievy malého kruhu a troch štvrtín - cez cievy veľkého kruhu krvného obehu.

Krv preteká tepnami pľúcneho obehu

Krvný obeh je kontinuálny pohyb krvi cez uzavretý kardiovaskulárny systém, ktorý zabezpečuje výmenu plynov v pľúcach a telesných tkanivách.

Okrem dodávania tkanív a orgánov kyslíku a odstraňovania oxidu uhličitého z nich, krvný obeh dodáva bunkám živiny, vodu, soli, vitamíny, hormóny a odstraňuje konečné produkty metabolizmu, zachováva stabilitu telesnej teploty, poskytuje humorálnu reguláciu a prepojenie orgánov a orgánových systémov tela.

Obehový systém sa skladá zo srdca a krvných ciev, ktoré prenikajú do všetkých orgánov a tkanív tela.

Krvný obeh začína v tkanivách, kde dochádza k metabolizmu cez steny kapilár. Krv, ktorá darovala kyslík orgánom a tkanivám, vstupuje do pravej polovice srdca a je im poslaná v malej (pľúcnej) cirkulácii, kde je krv nasýtená kyslíkom, vracia sa do srdca, vstupuje do ľavej polovice a znovu sa šíri po celom tele (veľký obeh),

Srdce je hlavným orgánom obehového systému. Je to dutý svalový orgán pozostávajúci zo štyroch komôr: dve predsiene (vpravo a vľavo), oddelené medzipriestorovou priehradkou a dve komory (vpravo a vľavo) oddelené medzikomorovou priehradkou. Pravá predsieň komunikuje s pravou komorou cez trikuspidus a ľavú predsieň s ľavou komorou cez dvojosovú chlopňu. Priemerná srdcová hmotnosť dospelého je asi 250 g pre ženy a asi 330 g pre mužov. Dĺžka srdca je 10 - 15 cm, priečna veľkosť je 8 - 11 cm a anteroposterior - 6 - 8,5 cm Priemerná veľkosť srdca pre mužov je 700 - 900 cm 3 a pre ženy - 500 - 600 cm 3.

Vonkajšie steny srdca sú tvorené srdcovým svalom, ktorý je štruktúrne podobný priečne pruhovaným svalom. Srdcový sval je však charakterizovaný schopnosťou automaticky rytmicky sťahovať v dôsledku pulzov, ktoré sa vyskytujú v samotnom srdci, bez ohľadu na vonkajšie vplyvy (automatické srdce).

Funkciou srdca je rytmické čerpanie krvi v artériách, ktoré k nemu dochádza cez žily. Srdce je v pokojovom stave tela približne 70-75-krát za minútu (1 krát za 0,8 s). Viac ako polovica tejto doby spočíva - relaxuje. Nepretržitá aktivita srdca pozostáva z cyklov, z ktorých každý pozostáva z kontrakcie (systoly) a relaxácie (diastoly).

Existujú tri fázy srdcovej aktivity:

  • predsieňová kontrakcia - predsieňová systola - trvá 0,1 s
  • komorová kontrakcia - komorová systola - trvá 0,3 s
  • celková pauza - diastola (súčasná relaxácia predsiení a komôr) - trvá 0,4 s

Počas celého cyklu átria teda pracujú 0,1 s a zvyšok 0,7 s, komory pracujú 0,3 s a 0,5 s. To vysvetľuje schopnosť srdcového svalu pracovať bez únavy počas celého života. Vysoký výkon srdcového svalu v dôsledku zvýšeného prekrvenia srdca. Približne 10% krvi uvoľnenej ľavou komorou do aorty vstupuje do tepien siahajúcich od nej, ktoré napájajú srdce.

Tepny sú krvné cievy, ktoré prenášajú okysličenú krv zo srdca do orgánov a tkanív (iba pľúcna tepna nesie venóznu krv).

Stenu tepny predstavujú tri vrstvy: vonkajší spojivový tkanivový plášť; stredné, pozostávajúce z elastických vlákien a hladkých svalov; interného, ​​vytvoreného endotelu a spojivového tkaniva.

U ľudí je priemer tepien od 0,4 do 2,5 cm, celkový objem krvi v arteriálnom systéme je 950 ml. Tepny postupne vetvujú do menších a menších ciev - arteriol, ktoré prechádzajú do kapilár.

Kapiláry (z latiny "Capillus" - vlasy) - najmenšie cievy (priemerný priemer nepresahuje 0,005 mm alebo 5 mikrónov), prenikajúce do orgánov a tkanív zvierat a ľudí s uzavretým obehovým systémom. Spojujú malé tepny - arterioly s malými žilami - žilkami. Cez steny kapilár tvorených bunkami endotelu sa medzi krvou a rôznymi tkanivami vymieňajú plyny a iné látky.

Žily sú krvné cievy, ktoré nesú krv nasýtenú oxidom uhličitým, metabolickými produktmi, hormónmi a inými látkami z tkanív a orgánov do srdca (okrem pľúcnych žíl, ktoré nesú arteriálnu krv). Stena žily je oveľa tenšia a pružnejšia ako stena tepny. Malé a stredné žily sú vybavené ventilmi, ktoré zabraňujú spätnému toku krvi v týchto cievach. U ľudí je objem krvi v venóznom systéme v priemere 3200 ml.

Pohyb krvi cez cievy bol prvýkrát opísaný v roku 1628 anglickým lekárom V. Harveyom.

Harvey William (1578-1657) - anglický lekár a prírodovedec. Vytvorená a uvedená do praxe prvá experimentálna metóda výskumu - vivisekcia (živá).

V roku 1628 vydal knihu Anatomické štúdie o pohybe srdca a krvi u zvierat, v ktorej opísal veľké a malé kruhy krvného obehu a formuloval základné princípy pohybu krvi. Dátum publikovania tejto práce sa považuje za rok narodenia fyziológie ako samostatnej vedy.

U ľudí a cicavcov sa krv pohybuje pozdĺž uzavretého kardiovaskulárneho systému pozostávajúceho z veľkého a malého obehu (obr.).

Veľký kruh začína od ľavej komory, prenáša krv cez aortu v celom tele, dodáva kyslík tkanivám v kapilárach, berie oxid uhličitý, mení sa z arteriálnej na venóznu a vracia sa do pravej predsiene cez hornú a dolnú dutú žilu.

Plúcny obeh začína z pravej komory, cez pľúcnu artériu prenáša krv do pľúcnych kapilár. Tu krv dáva oxid uhličitý, je nasýtený kyslíkom a prúdi cez pľúcne žily do ľavej predsiene. Z ľavej predsiene sa krv cez ľavú komoru vracia do systémového obehu.

Pľúcny obeh - pľúcny kruh - slúži na obohatenie krvi kyslíkom v pľúcach. Začína od pravej komory a končí ľavou predsieňou.

Z pravej srdcovej komory sa venózna krv dostáva do pľúcneho kmeňa (spoločnej pľúcnej tepny), ktorý sa čoskoro rozdelí na dve vetvy, ktoré nesú krv doprava a doľava.

V pľúcach sa tepny rozvetvujú do kapilár. V kapilárnych sieťach, ktoré prelínajú pľúcne vezikuly, krv vydáva oxid uhličitý a dostáva výmenou nový prívod kyslíka (pľúcne dýchanie). Okysličená krv sa stáva šarlátovou, stáva sa arteriálnou a tečie z kapilár do žíl, ktoré sa spájajú do štyroch pľúcnych žíl (dve na každej strane) a spadajú do ľavej predsiene srdca. V ľavej predsieni končí malý (pľúcny) cirkulačný okruh a arteriálna krv, ktorá vstupuje do átria, prechádza ľavým atrioventrikulárnym otvorom do ľavej komory, kde začína veľká cirkulácia. V dôsledku toho prúdi venózna krv v tepnách pľúcneho obehu a v žilách prúdi arteriálna krv.

Systémový obehový okruh - tuhý - zhromažďuje venóznu krv z hornej a dolnej polovice tela a podobne distribuuje arteriálnu krv; začína od ľavej komory a končí pravou predsieňou.

Z ľavej srdcovej komory sa krv dostáva do najväčšej arteriálnej cievy, aorty. Arteriálna krv obsahuje živiny a kyslík potrebné pre vitálne funkcie tela a má jasnú šarlátovú farbu.

Aorta sa vtiahne do tepien, ktoré idú do všetkých orgánov a tkanív tela a prechádzajú do hrúbky arteriol a ďalej do kapilár. Kapiláry sa potom odoberajú do žiliek a ďalej do žíl. Cez kapilárnu stenu dochádza k metabolizmu a výmene plynov medzi krvou a telesnými tkanivami. Arteriálna krv tečúca v kapilárach vydáva živiny a kyslík a na oplátku dostáva metabolické produkty a oxid uhličitý (dýchanie tkaniva). V dôsledku toho je krv vstupujúca do venózneho lôžka chudobná na kyslík a bohatá na oxid uhličitý, a preto má tmavú farbu - venóznu krv; v prípade krvácania je možné určiť krvnou farbou, či je poškodená artéria alebo žila. Žily sa spájajú do dvoch veľkých kmeňov - horných a dolných dutých žíl, ktoré padajú do pravej predsiene srdca. Táto časť srdca končí veľkým (telesným) kruhom krvného obehu.

Arteriálna krv preteká tepnami vo veľkom obehu a žilová krv tečie žilami.

Naopak, v malom kruhu prúdi venózna krv zo srdca cez tepny a krv sa vracia cez žily.

Tretí (srdcový) kruh krvného obehu slúžiaci samotnému srdcu je dodatkom k veľkému kruhu. Začína koronárnymi artériami srdca, ktoré sa vynorí z aorty a končí žilami srdca. Ten sa spája do koronárneho sínusu, ktorý prúdi do pravej predsiene, zatiaľ čo ostatné žily sa otvárajú priamo do predsieňovej dutiny.

Pohyb krvi cez cievy

Každá tekutina tečie z miesta, kde je tlak vyšší, až tam, kde je nižší. Čím väčší je tlakový rozdiel, tým vyšší je prietok. Krv v cievach veľkého a malého kruhu krvného obehu sa tiež pohybuje v dôsledku rozdielu v tlaku, ktorý srdce vytvára prostredníctvom kontrakcií.

V ľavej komore a aorte je krvný tlak vyšší ako v dutých žilách (podtlak) av pravej predsieni. Rozdiel tlaku v týchto oblastiach zabezpečuje pohyb krvi v systémovom obehu. Vysoký tlak v pravej komore a pľúcnej tepne a nízko v pľúcnych žilách av ľavej predsieni zaisťujú pohyb krvi v pľúcnom obehu.

Najvyšší tlak v aorte a veľkých artériách (krvný tlak). Arteriálny krvný tlak nie je konštantný [ukázať]

Krvný tlak je tlak krvi na stenách krvných ciev a srdcových komôr, ktorý je výsledkom kontrakcie srdca, ktorá vstrekuje krv do cievneho systému a cievnej rezistencie. Najdôležitejším medicínskym a fyziologickým indikátorom stavu obehového systému je množstvo tlaku v aorte a veľkých artériách - krvný tlak.

Arteriálny krvný tlak nie je konštantný. U zdravých ľudí v kľude sa rozlišuje maximálny alebo systolický krvný tlak - hladina tlaku v artériách počas srdcovej systoly je približne 120 mm Hg a minimálna alebo diastolická hladina tlaku v artériách počas diastolického srdca je približne 80 mm Hg. tj pulzov arteriálneho krvného tlaku v čase so sťahmi srdca: v čase systoly stúpa na 120-130 mm Hg. A počas diastoly klesá na 80-90 mm Hg. Art. Tieto kolísania pulzného tlaku sa vyskytujú súčasne s pulznými osciláciami arteriálnej steny.

Pulz - periodická trhavá expanzia arteriálnych stien, synchrónna s kontrakciou srdca. Pulz určuje počet tepov za minútu. U dospelých je pulzová frekvencia v priemere 70-80 úderov za minútu. Počas cvičenia sa môže tepová frekvencia zvýšiť až na 150-200 úderov. V miestach, kde sa artérie nachádzajú na kosti a ležia priamo pod kožou (žiarenie, časovo), je pulz ľahko hmatateľný. Rýchlosť šírenia pulzovej vlny je asi 10 m / s.

Množstvo krvného tlaku je ovplyvnené:

  1. prácu srdca a silu srdca;
  2. veľkosť lúmenu ciev a tón ich stien;
  3. množstvo krvi cirkulujúcej v cievach;
  4. viskozitu krvi.

Krvný tlak u ľudí sa meria v brachiálnej artérii a porovnáva sa s atmosférickým tlakom. Na to použite gumenú manžetu na ramene, pripojenú k manometru. Vzduch sa čerpá do manžety, až kým pulz na zápästí nezmizne. To znamená, že brachiálna artéria je stlačená s veľkým tlakom a krv ňou neprechádza. Potom postupne uvoľňujte vzduch z manžety a sledujte vzhľad pulzu. V tomto bode sa tlak v artériách stáva mierne vyšší ako tlak v manžete a krv, a tým sa pulzová vlna začína dostávať do zápästia. Hodnoty manometra v tomto čase tiež charakterizujú krvný tlak v brachiálnej tepne.

Pretrvávajúce zvýšenie krvného tlaku vyššie uvedených hodnôt pri odpočinku v tele sa nazýva hypertenzia a jej pokles je hypotónia.

Hladina krvného tlaku je regulovaná nervovými a humorálnymi faktormi (pozri tabuľku).

Rýchlosť pohybu krvi závisí nielen od rozdielu tlaku, ale aj od šírky krvného obehu. Hoci aorta je najširšia nádoba, je v tele sama a všetka krv ňou preteká, ktorá je vytlačená ľavou komorou. Preto je maximálna rýchlosť tu 500 mm / s (pozri tabuľku 1). Ako sa tepny rozvetvujú, ich priemer sa znižuje, ale celková plocha prierezu všetkých tepien sa zvyšuje a rýchlosť krvi sa znižuje, pričom dosahuje kapilár 0,5 mm / s. Kvôli takejto nízkej miere prietoku krvi v kapilárach sa krvi darí dodávať do tkanív kyslík a živiny a prijímať produkty ich životne dôležitej aktivity.

Spomalenie prietoku krvi v kapilárach je vysvetlené ich obrovským počtom (asi 40 miliárd) a veľkým celkovým lúmenom (800-násobok lúmenu aorty). Pohyb krvi v kapilárach je spôsobený zmenami v lúmene zásobujúcich sa malých tepien: ich expanzia zvyšuje prietok krvi v kapilárach a zužovanie sa znižuje.

Žily na ceste od kapilár, keď sa približujú k srdcu zväčšujú, spájajú sa, ich počet a celkový lúmen krvného riečiska sa znižuje a zvyšuje sa rýchlosť pohybu krvi v porovnaní s kapilárami. Z karty. 1 tiež ukazuje, že 3/4 celej krvi je v žilách. Je to spôsobené tým, že tenké steny žíl sa môžu ľahko natiahnuť, takže môžu obsahovať oveľa viac krvi ako zodpovedajúce tepny.

Hlavným dôvodom pre pohyb krvi žilami je rozdiel v tlaku na začiatku a na konci žilového systému, takže pohyb krvi žilami prebieha v smere srdca. To uľahčuje sací účinok hrudníka ("dýchacie čerpadlo") a kontrakcie kostrových svalov ("svalová pumpa"). Počas inspiračného tlaku v hrudníku klesá. Rozdiel tlaku na začiatku a na konci venózneho systému sa zvyšuje a krv cez žily sa posiela do srdca. Kostrové svaly, sťahujúce, stláčajú žily, čo tiež prispieva k pohybu krvi do srdca.

Vzťah medzi rýchlosťou pohybu krvi, šírkou krvného riečišťa a tlakom krvi je znázornený na obr. 3. Množstvo krvi pretekajúce za jednotku času cez cievy sa rovná súčinu rýchlosti krvi pohybujúcej sa prierezovou plochou ciev. Táto hodnota je rovnaká pre všetky časti obehového systému: koľko krvi tlačí srdce do aorty, koľko z nich tečie cez tepny, kapiláry a žily a vracia sa do srdca toľko, koľko je a je rovné minútovému objemu krvi.

Redistribúcia krvi v tele

Ak sa tepna rozširujúca sa od aorty k niektorému orgánu rozširuje v dôsledku relaxácie hladkých svalov, orgán dostane viac krvi. Súčasne dostanú ďalšie orgány kvôli tejto menšej krvi. Toto je redistribúcia krvi v tele. V dôsledku redistribúcie prúdi viac krvi do pracovných orgánov na úkor orgánov, ktoré sú v súčasnosti v pokoji.

Redistribúcia krvi je regulovaná nervovým systémom: súčasne s expanziou krvných ciev v pracovných orgánoch sa zužujú krvné cievy neaktívnych a krvný tlak zostáva nezmenený. Ale ak sa všetky tepny rozšíria, povedie to k poklesu krvného tlaku ak zníženiu rýchlosti krvi v cievach.

Čas cirkulácie krvi

Doba krvného obehu je čas potrebný na to, aby krv prešla celým krvným obehom. Na meranie času krvného obehu sa používa množstvo metód [ukázať]

Princíp merania času krvného obehu spočíva v tom, že látka sa zavádza do žily, ktorá sa zvyčajne nenachádza v tele, a určuje sa po akej dobe sa objavuje v žile druhej strany rovnakého mena alebo spôsobuje jej charakteristický účinok. Napríklad alkaloidový roztok lobelínu pôsobiaci krvou v dýchacom centre mozgu medulla sa vstrekne do ulnárnej žily a stanoví sa čas od okamihu, keď sa látka vstrekne do okamihu, keď sa objaví krátky dych alebo kašeľ. To sa stane, keď molekuly Lobeline, ktoré vytvorili okruh v obehovom systéme, budú pôsobiť na dýchacie centrum a spôsobia zmenu v dýchaní alebo kašľaní.

V posledných rokoch sa rýchlosť krvného obehu v oboch kruhoch krvného obehu (alebo len v malom kruhu, alebo len vo veľkom kruhu) určuje pomocou rádioaktívneho izotopu sodíkového a elektrónového počítača. Na tento účel sú niektoré z týchto počítadiel umiestnené na rôznych častiach tela v blízkosti veľkých ciev av oblasti srdca. Po zavedení rádioaktívneho izotopu sodíka do ulnárnej žily sa stanoví čas výskytu rádioaktívneho žiarenia v oblasti srdca a skúmané cievy.

Doba krvného obehu u ľudí je v priemere okolo 27 systol srdca. Pri 70-80 srdcových kontrakciách za minútu dochádza k úplnému prekrveniu v priebehu približne 20-23 sekúnd. Nemali by sme však zabúdať, že rýchlosť prietoku krvi pozdĺž osi cievy je väčšia ako rýchlosť jej stien, a že nie všetky oblasti ciev majú rovnakú dĺžku. Preto nie je všetka krv taká rýchla a čas uvedený vyššie je najkratší.

Štúdie na psoch ukázali, že 1/5 času úplného krvného obehu pripadá na pľúcny obeh a 4/5 na peletu.

Inervácia srdca. Srdce, rovnako ako ostatné vnútorné orgány, je inervované autonómnym nervovým systémom a dostáva dvojitú inerváciu. Srdce je sympatické nervy, ktoré posilňujú a urýchľujú jeho redukciu. Druhá skupina nervov - parasympatikum - pôsobí na srdce opačným spôsobom: spomaľuje a oslabuje srdcový tep. Tieto nervy regulujú prácu srdca.

Okrem toho srdce ovplyvňuje hormón nadobličiek - adrenalín, ktorý s krvou vstupuje do srdca a zvyšuje jeho kontrakciu. Regulácia práce orgánov pomocou látok prenášaných krvou sa nazýva humorálna.

Nervová a humorálna regulácia srdca v tele pôsobí v zhode a poskytuje presné prispôsobenie kardiovaskulárneho systému potrebám tela a okolitým podmienkam.

Inervácia krvných ciev. Krvné cievy sú inervované sympatickými nervami. Vzrušenie šíriace sa cez ne spôsobuje kontrakciu hladkých svalov v stenách ciev a stláča krvné cievy. Ak budete rezať sympatické nervy, ktoré idú do určitej časti tela, príslušné cievy sa budú rozširovať. V dôsledku toho cez sympatické nervy na krvné cievy po celú dobu prichádza vzrušenie, ktoré udržiava tieto cievy v stave určitého zužujúceho sa cievneho tonusu. Keď sa vzrušenie zvyšuje, frekvencia nervových impulzov sa zvyšuje a cievy sa silnejšie zužujú - zvyšuje sa vaskulárny tón. Naopak, s poklesom frekvencie nervových impulzov v dôsledku inhibície sympatických neurónov sa cievny tonus znižuje a krvné cievy sa rozširujú. Nádoby niektorých orgánov (kostrové svaly, slinné žľazy), okrem vazokonstriktora, tiež zapadajú do vazodilatačných nervov. Tieto nervy sú vzrušené a rozširujú krvné cievy orgánov počas ich práce. Krvný lumen je tiež ovplyvnený krvnými cievami. Adrenalín obmedzuje cievy. Ďalšia substancia - acetylcholín, - vylučovaná koncami niektorých nervov, ich rozširuje.

Regulácia kardiovaskulárneho systému. Krvné zásobovanie orgánov sa mení podľa ich potreby vďaka opísanej redistribúcii krvi. Toto prerozdelenie však môže byť účinné len vtedy, ak sa tlak v artériách nemení. Jednou z hlavných funkcií nervovej regulácie krvného obehu je udržanie konštantného krvného tlaku. Táto funkcia sa vykonáva reflexívne.

V stene aorty a karotických artériách sú receptory, ktoré sú viac podráždené, ak krvný tlak prekračuje normálnu úroveň. Excitácia z týchto receptorov ide do vazomotorického centra nachádzajúceho sa v drene a inhibuje jeho prácu. Od stredu sympatických nervov k cievam a srdcu sa začína prijímať slabšia excitácia ako predtým a krvné cievy sa rozširujú a srdce oslabuje jeho prácu. V dôsledku týchto zmien sa znižuje krvný tlak. A ak z nejakého dôvodu tlak klesol pod normu, podráždenie receptora sa úplne zastaví a cievne motorické centrum, ktoré nedostáva inhibičné účinky z receptorov, posilňuje jeho aktivitu: vysiela viac nervových impulzov za sekundu do srdca a ciev, cievy sa zužujú, srdcové kontrakty, častejšie a silnejší krvný tlak.

Srdcová hygiena

Normálna aktivita ľudského tela je možná len vtedy, ak existuje dobre vyvinutý kardiovaskulárny systém. Rýchlosť prietoku krvi určí stupeň prekrvenia orgánov a tkanív a rýchlosť odstraňovania odpadových produktov. Počas fyzickej práce sa súčasne so zvyšovaním a zvyšovaním srdcovej frekvencie zvyšuje potreba orgánov na kyslík. Táto práca môže poskytnúť len silný srdcový sval. Aby sme boli odolní voči rôznym prácam, je dôležité trénovať srdce, zvýšiť silu jeho svalov.

Fyzická práca, telesná výchova rozvíjajú srdcový sval. Na zabezpečenie normálnej funkcie kardiovaskulárneho systému musí človek začať svoj deň rannými cvičeniami, najmä ľuďmi, ktorých povolania nesúvisia s fyzickou prácou. Na obohatenie krvi kyslíkom je najlepšie cvičiť na čerstvom vzduchu.

Treba mať na pamäti, že nadmerný fyzický a psychický stres môže spôsobiť narušenie normálneho fungovania srdca a jeho chorôb. Zvlášť škodlivé účinky na kardiovaskulárny systém majú alkohol, nikotín, drogy. Alkohol a nikotín otrávia srdcový sval a nervový systém, čo spôsobuje dramatickú dysreguláciu vaskulárneho tonusu a srdcovej aktivity. Vedú k rozvoju závažných ochorení kardiovaskulárneho systému a môžu spôsobiť náhlu smrť. Mladí ľudia, ktorí fajčia a konzumujú alkohol častejšie ako iní, majú kŕče srdcových ciev, ktoré spôsobujú ťažké infarkty srdca a niekedy aj smrť.

Prvá pomoc pri zraneniach a krvácaní

Poranenia sú často sprevádzané krvácaním. Existuje kapilárne, venózne a arteriálne krvácanie.

Kapilárne krvácanie sa vyskytuje aj pri menšom poranení a je sprevádzané pomalým prúdením krvi z rany. Táto rana by sa mala ošetriť roztokom brilantnej zelenej farby (brilantná zelená) na dezinfekciu a aplikovať čistý gázový obväz. Obväz zastaví krvácanie, podporuje tvorbu krvnej zrazeniny a nedovoľuje mikrobom dostať sa do rany.

Venózne krvácanie sa vyznačuje výrazne vyšším prietokom krvi. Prúdenie krvi má tmavú farbu. Ak chcete zastaviť krvácanie, musíte aplikovať tesný obväz pod ranu, to znamená ďalej od srdca. Po zastavení krvácania sa rana ošetri dezinfekčným prostriedkom (3% roztok peroxidu vodíka, vodka), zviazaný sterilným tlakovým obväzom.

S arteriálnym krvácaním z rany tryskajúcou červenou krvou. Toto je najnebezpečnejšie krvácanie. Ak je poškodená končatina, musíte zdvihnúť končatinu tak vysoko, ako je to len možné, ohnúť ju a pritlačiť zranenú tepu prstom na miesto, kde sa blíži povrchu tela. Je tiež potrebné, aby sa nad miestom zranenia, teda bližšie k srdcu, položil gumičkový pás (na tento účel môžete použiť obväz, lano) a pevne ho utiahnite, aby sa krvácanie úplne zastavilo. Škrtidlo nie je možné udržiavať napnuté dlhšie ako 2 hodiny, pri jeho aplikácii je potrebné pripojiť poznámku, na ktorej má byť vyznačený čas na použitie ťažného lana.

Je potrebné mať na pamäti, že venózne a ešte viac arteriálne krvácanie môže viesť k výraznej strate krvi a dokonca k smrti. Preto, ak je zranený, je potrebné zastaviť krvácanie čo najskôr, a potom doručiť obeť do nemocnice. Ťažká bolesť alebo strach môže spôsobiť, že človek stratí vedomie. Strata vedomia (mdloby) je výsledkom inhibície vazomotorického centra, poklesu krvného tlaku a nedostatočného prekrvenia mozgu. Osoba v bezvedomí musí dostať čuch niektorých netoxických látok so silným zápachom (napr. Čpavok), navlhčenú tvár studenou vodou, alebo ho jemne poplácať po lícach. Keď sú čuchové alebo kožné receptory podráždené, excitácia z nich vstupuje do mozgu a odstraňuje inhibíciu vazomotorického centra. Krvný tlak stúpa, mozog dostáva primeranú výživu a vedomie sa vracia.